
Journal of Applied Mechanics and Technkal Physics, Vol. 35, No. 6, 1994 

L O N G  W A V E S  I N  A N  E D D Y I N G  B A R O T R O P I C  L I Q U I D  

V. M. Teshukov UDC 532.591 +517.958 

The integro-differential equations of the theory of long waves which describe eddying flow of a barotropic liquid with 

a free boundary in an Eu le r -  Lagrange system of coordinates are considered. For flows with a velocity profile that is monotonic 

with depth, the necessary and sufficient conditions for the system of equations of motion to be hyperbolic are obtained; these 

are the necessary conditions for the Cauchy problem to be well-posed. The velocities of the characteristics are determined and 

the characteristic form of the system is calculated. An example of  the initial data for which the Cauchy problem is ill-posed 
is constructed. 

The steady solutions of the system describing flow with a critical layer were investigated in [1], and particular simple- 

wave solutions were considered in [2]. 

1. Model of Long Waves. The solution of  the initial boundary-value problem 

Ur + UUx + our + P-~Px = O, 
eZ(Vr + u~ + wr)  + P-~Pr = - 1, 0 ~ Y ~ h(X, 73, 

Pr + UPx + uPv + P(Ux + or) = 0, - oo < X < 0% 

p = p(p),  p ' (p)  > O, 

p(X,  Y, O) = po(X, Y), u(X, Y, O) = uo(X, ~9, 

o(X, Y, O) = vo(X, Y), h(X, O) = ho(X), o(X, O, 7") = O, 

h r + u(X, h, 73h x = o(X, h, 73, p(X,h,T) = Po = const 

(i.i) 

describes the plane-parallel motion of a layer of  barotropic liquid with a free boundary Y = h(X, T) over a smooth bottom 

in a gravitational field of force. Here 

u~ = (g~o)V2u, o 1 = (gHo)l/2~oLOb, Pl = Rog~oP, 

pl = R0p, X, = Z0X, vl = ~o Y, r~ = Lo(gHo)-V'r 

are the dimensional components of the velocity vector, the pressure, density and Cartesian coordinates in a plane and in time, 

u, v, p, p, X, Y, T are the corresponding dimensionless quantities, H o and L o are the characteristic vertical and horizontal 

scales, g is the acceleration due to gravity, and R 0 has the dimensions of density. The specified functions u o, v o, P0, ho are 
determined for 0 < Y _< ho(X), X E ( - o o ,  co). 

The theory of  long waves (the theory of shallow water) arises in the passage to the limit e = HoL o -  t _., 0. Here, the 

second equation of system (i.  I) becomes the hydrostatic law of  the pressure distribution with depth: 

Pv = - P ( P )  (p(x ,  h, 73 = po). (1.2) 

Integrating (1.2) and the equation of continuity we obtain the relations 
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p =  / ( h -  r3 ( /  - t (~ )a~  = p , 
! f  ~ 

Y 

p = f ( h  - ~ ,  ~, = - p-~ f (Pr + (~~ 
0 

(1.3) 

After some reduction we obtain the problem of finding u(X, Y, T) and h(X, T): 

u r + u u  x + u u  r + h  x =  0 , 0 ~  Y < ~ h ( X , T ) ,  

I ' (h )h  r + f ' ( h  - Y)u(X,  Y, T)d = 0, 

X 

u(X,  Y, O) = uo(X, Y), h(X,  O) = ho(X) 

(1.4) 

(p, p, v are given in (1.3)). 
For the special class of eddy-flee motions (in the long-wave approximation the fact that there are no eddies is equivalent 

to the condition Uy = 0), Eqs. (1.4) reduce to the analog of one-dimensional gas dynamics: 

rl(ur + UUx) + Px = O,  fir + (u'7)x = 0 
h (1.5) 

(r 1 = f (h)  - Po, P = f ( f (~)  -- Po)d~) �9 
0 

Here the equation of state of the "gas" has the form 

+Po 

p = P(~) = f (~ - po)6o(~l)-la~ 
PO 

(P'0/) > 0 when ~7 > 0). System (1.5), which describes the propagation of long waves in eddy-flee flow is a hyperbolic system 
of differential equations. 

In the general case of eddying flow, when Uy # 0, the integro-differential equations (1.4) can be reduced to an infinite 
system of differential equations for the momenta: 

(ao'Po 

/ '~ /x 

(A = f p u ' a r ,  n = o, 1, 2 . . . .  ). 
0 

(1.6) 

It is difficult to investigate the conditions under which the infinite system of equations of the form (1.6) is hyperbolic, 
since a general theory of such systems has not been developed. On the other hand, we can convert the problem with free 
boundary (1.4) to a Cauchy problem for integro-differential equations of special form in a fixed region, and we can use the 
method of analyzing the characteristic properties of integro-differential equations [3]. 

Using the replacement of variables [3] 

X = x , T =  t, Y= q~(x,t,,~) (0~<~ ~< 1), (1.7) 

where r t, k) is the solution of the Cauchy problem 

~,, + u(x ,  ,I~, t ) ~  = v(x, ~I,, O, ~ ( x ,  O, ,1) = ,lho(x), (1.8) 
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the region of flow is mapped into the strip 0 _< X -< 1, - 0o < x _< oo. 

By virtue of (1.4) and (1.8) for the functions 

u(x, t, )t), H(x ,  t, )t) = p (x ,  t, 2)Ca(x, t, ~t) (H > 0), 

defined in this strip, we obtain the Cauchy problem 
I 

u, + ""x + 6~176 -~ f r i a r ,  = O, H + (uH)x = O, 
0 

u(x, O, a) = Uo(X, ~.ho(x)), n ( x ,  O, ~) = Oo(X, l h d x ) ) h o ( x  ). 

The pressure p(x, t, X) can then be found from the formula 

1 

p(x,  t, ~.) = Po + f H ( x ,  t, v)dv.  

(1.9) 

In (1.9) we have denoted by p0 the pressure on the bottom (p0 = p(x, t, 0)). If  the functions u, H and p are defined, 

the equation of state p = o(P) enables us to find the density, while the relations 

~Pa = p - l H ,  r  t, O) = O, dp + udP = o 

define the function @ and the vertical component of the velocity. When @x # 0, the replacement of  variables (1.7) is 
reversible, which enables us to obtain the solution u(X, Y, T), h(X, T) = @(X, T, 1) of problem (1.4). Hence, the problem 

of eddying flows with a free boundary (1.1) reduces to problem (1.9) in a fixed region. 
2. Condition for  the System of Equations (1.9) to be Hyperbolic.  The question of whether the Cauchy problem is 

well-posed for system (1.9) for arbitrary initial data is still an open one. We also do not know whether Eqs. (1.9) possess such 
an important qualitative property, which characterizes wave processes, as f'miteness of the velocity of propagation of 

perturbations. The problem arises of the correct formulation of the boundary conditions for modeling flows in bounded regions. 

For a system of first-order partial differential equations the solution of these problem involves investigating the properties of 
hyperbolicity of the system and the behavior of its characteristics. In this section we will investigate the conditions for Eqs. 
(1.9) to be hyperbolic. The basis of the analysis is a generalization of the idea of hyperbolicity and the determination of the 

characteristics assumed for systems of equations with operator coefficients in [3]. 

The system of equations (1.9) has the form 

(u(x,  t. a) / 
v, + a v  = 0, u = Vc(x ' i, ~ ) ) '  

where A is an operator acting on the vector-function f = (fl, f2) T according to the rule 

(2.1) 

A f= 
uIl + a I ,  d2 l 

, o  = [p(po + f~tav)]-1 ) o 

The characteristic curve of the system of equations (2.1) x = x(t) is defined [3] by the differential equation x'(t) = 

k(x, t) (k is the eigenvalue of the operator A*). The equation 

(F,(A - k/)~) = 0 (2.2) 

for the linear vector-functional F = (F 1, F2), which acts on an arbitrary infinitely differentiable vector-function of the variable 

), (which depends on x and t as on the parameters), then has a nontrivial solution in the class of locally integrable or generalized 
functions (the functions u and H are assumed to be infinitely differentiable and (F, ~o) denotes the results of  the action of the 
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Fig. 1 

functional F on the trial function ~ = (~o 1, ~o2)T)). By the action of F on Eqs. (2.1) we obtain the following relation on the 

characteristic: 

(F, U + kU)  = 0. (2.3) 

System (2.1) will be hyperbolic if all the eigenvalues k are real and the set of relations on the characteristics (2.3) is equivalent 

to Eqs. (2.1). 

Since the trial functions ~'1, r  are independent we obtain the following equations from (2.2): 

1 

(FI , (u  - k)~ol) + (F~, H~ol) = O, (F2,(u - k)~o2) + a f ~o2dv(F l, 1) = 0. 
0 

By virtue of these equations, the action of F 2 on the trial function ~o is defined if the action F 1 is specified: 

( e , ,  ~ , )  = - ( : ~ , ( u  - k ) ~ ' - ~ , ) .  (2.4) 

The functional F 1 and the quantity k are found by solving the eigenvalue problem 

1 

( f l ,Cu  - k)2H-~)  - a f g, dv(F~, 1) = 0 (2.5) 
0 

(~b is an arbitrary trial function). To construct the solutions of Eq. (2.5) we will consider the set of numbers k in the complex 
plane outside the section of values of the function u: k ;~ u(x, t, X) (x and t are fixed), X E [0, I]. It follows from (2.5) that 

1 

~o ~U H dv ( F  1, 7:) = a ~ (F , ,  1). ( 2 . 6 )  

Nontrivial solutions of  Eq. (2.5) exist for k = k i, which satisfy the characteristic equation 

1 t t dv  
X(g) = 1 - a of (u ~ k") 2 - 0. (2.7) 

For k = k i the action of the functional F11 onthe trial function ~b is specified by (2.6), where we must put (F1 i, 1) = 1 (F1 i 

is defined apart from a factor which is independent of x and t). Henceforth we will consider flows with a monotonic velocity 

prof'fle: u x : 0. For smooth flow it is sufficient to require the condition u x ~ 0 at the initial instant of time. 
Suppose k = k x is one of the values of horizontal velocity: for a certain X kt(x, t) = u(x, t, X). For each k x we 

determined the action of the functionals F1 xl, F1 x2 on ~b(p): 

( F : L  ~/) = - ~, '(;,),  ( F :  2, 9 )  = , ; (a )  + ,7 . . . . .  
0 (u(v) - u(;t)) 2 " 

(2.8) 
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Here the integral is evaluated in the sense of the principal value; we have omitted the dependence of the functions on the 

variables x and t in the notation for the multiplicity of the notation. A direct evaluation shows that (2.5) holds if k = kX(x, 

t), and F 1 = FI xl or F 1 = F1 x2. The characteristic equation (2.7) has two roots (k = k 3, k = k 4) on the real axis outside the 

range of values of  u(x, t, k). To fix our ideal we will assume that u x > 0 (the case when u x < 0 is exactly analogous). Since 

x(k) --" 1 when Ikl --- co, x(k) "-" - oo when k --, u 0 = u(x, t, 0) and k --- u 1 = u(x, t, 1), the roots k = k 3 < u 0, k = k 4 > 

u 1 are obtained. The inequality x ' (k)  # 0 is satisfied when k > u 1 and k < u o, and hence there are no other real roots outside 

the section [u o, Ul]. 

By (2.4) the functionals F2 xl, F2 x2, F2i (i = 3, 4) act on the trial function ~o(v) according to the rule 

. ~(,,)av , 
(Fz at, ~o) = ua(2lH-l(,l.)~o(2), ( F  v @1 = - cr uCv) - k' 

0 
I 

fo 9(v)dv ( F ; 2 '  = - " 

The conditions for the system of equations (1.9) to be hyperbolic will be formulated in terms of X+(x, t, X) = X+(u(X)) 

- the limiting values of the analytic function x(z) in the upper and lower half-planes in the section [u(x, t, 0), u(x, t, 1)]: 

Z'-(u()t)) = 1 + crw~l(ul - u0.)) -! - crwol(uo - u(2)) -1 

- c ,  ~ . i v )  - - -  . ( , l )  + ~ t  - -  
0 ~' ,1U,1 

Here co = uxH -1;  the limits 0 and 1 correspond to the values of the functions when ), = 0 and 1; i is the square root of - 1 

(when calculating the limiting values we used (2.7) and the Sokhotski i -Plemel  formula [4]). 

The following lemma holds for a monotonic profile of the velocity. 

L e m m a  2.1. Suppose the functions u(x, t, k), H(x, t, 3,) satisfy the conditions 

X § *: 0, k = Aarg;~§ - t  = 0. (2.9) 

Then Eq. (2.7) has only real roots in (2.9) arg flu) is the increment of the argument of the complex-valued function f when 

3, changes from 0 to 1). 

Proof.  Consider the region D5 in the plane of the complex variable z, bounded by a circle or radius R~ with center 

at the origin of coordinates, circles of radii r~ with centers at the points k 3, k 4, u o, u 1 and sections of parallel straight lines a 

distance 6 from the real axis (r, --, 0, R~ --, oo when 6 --, 0, see the figure). According to the principle of the argument [4], the 

increment in the argument of the function • along the boundary of the region D~, normalized to 2~r, is equal to the number 

of zeros of the function X(z) in the region D~ (X(Z) has no poles in the region D~). Since X(Z) has first-order zeros at the points 

z = k i (i = 3, 4) and first-order poles at the points z = u 0 and z = u 1, the increments of the argument in small neighborhoods 

will, in sum, be equal to zero and the condition for there to be no roots in the section D~ as [u o, Ul]. 

Note 2.1. Any complex root k = k 1 = ik 2 (k 2 # 0) of Eq. (2.7) belongs to the subregion 

( k  I _ ,.o)2 + + - po)-l ) < : 

(r ---- 2-t(ul  -- u0), r o = 2- t (ul  + uo) ) 

of the circle [k - r o [ < r (the analog of Howard's  theorem). In addition u o < k 1 < u 1. 

These inequalities are a consequence of  the relations which follow from (2.7) when split into imaginary and real parts, 

~ (u - k~)ndv 
. I', - o ,  
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1 

f ( ( U  -- k l )  2 - k ]  -- o ' -10e(h) - p 0 ) - l i l A  - kl4)Hda, 
I" -'~14 

0 

1 

= f((u - ~o) ~ - (k~ - to) 2 - k~ - ~-~(/Ih) - pa)-~lu - ~l')~a~ , 
lu - k l  4 = 0  

and the obvious inequalities (u - r0) 2 _< r 2, t u - k l 4 ~ 1(2 4. Hence, if, during the evolution of the flow, complex roots 

appear for the first time in the equation X(z) = 0, and branch off from those points of the section of the real axis [u o, u 1,], 

where the equality x + = 0 is satisfied, the condition X + ~ 0 in (2.9) excludes the neutral case and thereby ensures that the 

roots of Eqs. (2.7) are real not only for specified profiles of u and H but also for fairly small smooth perturbations of these 

profiles. 

The system of relations on the characteristics obtained by the action of the functions F M, F h2, F i on Eqs. (1.9) has 

the form 

ua, + uu~ - uaH-Z(1"I~ + uI-I ) = O, 
1 

u, + uu,, + a f riCO(u,0,) + uCX)u~(~) - u(~) - uO.)u,,Ca)).d v 

o (u0') - u(a)) ~ 
1 

r , , : , )  + ~xcv)a~" = o, (2.10) 

0 

- j = o (~ = 3, 4). 
J 
o (u0,) - k ' )  2 o (u(,,) - ,~') 

Lemma 2.2. Suppose the functions S z, Stk ,  S 2 satisfy the H61der condition with respect to the variable X, and the 

relations (F M, S) = 0, (F x2, S) = 0, (F i, S) = 0 (t = 3, 4)aresatisfiedfor the vector-functions S = (S 1, $2) T. Then S = 0. 

Proof. Taking the first equation Six = uxH-1S2 into account, the equation (F x2, S) = 0 becomes 

1 

u--~Jdv = 0. (2.11) 

It can be shown by direct substitution that r = eq(u - k3) -1 + ~2(u - k4) -1 satisfies Eq. (2.11) (cq, ot 2 are parameters 

independent of X). Hence, the function S o = S 1 - r is also a solution of Eq. (2.11) and, by an appropriate choice of ~z and 

c% vanishes when k = 0 and 1. Integration by parts in (2.11) gives the following equation for determining So(X): 

u 1 

So{Re~ +} - a f a 1 So(v)du(v ) - ~ - ~  (u~'Z) u~v) - u--~) - O. (2.12) 
u 0 

By the general theory of singular integral equations [4]. Eq. (2.12) is uniquely solvable in the class of functions which 

satisfy the H61der condition with respect to the variable ~ (or u(v) ) and vanishes at the ends of the interval [u 0, Ul], if 

X + ~ 0 a n d  

• = Aarg~*(u)(X-(u)) -z = 0. 

Then So(),) = 0. 
The relations (F, S) = 0 (t = 3, 4) give two equations for determining ~1 and ~2: 

air33 + %r~ = 0, azFs, + ,~2r,, = 0. 

Here 
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t 

r,j f ~ :d ((u - e ) - ' ( u  - le)-')av. 
0 

It can be verified that I'ij = 0, i # j ,  if k i, and kJ are roots of Eq. (2.7). Since I'ij # 0, we have oq = o~ 2 = 0, 

S 1 = S O + ~o = 0, S 2 = (ux ) - lHSlx  = 0. This proves the lemma. 

The following theorem holds for flows with a monotonic velocity profile satisfying the condition X + # 0. 

Theorem 2.1. Conditions (2.9) are necessary and sufficient for Eqs. (1.9) to be hyperbolic. 

In fact, by Lemma 2.1, conditions (2.9) are sufficient for the roots of the characteristic equation to be real. The 

conditions on the characteristics (2.10) have the form of the relations of Lemma 2.2, where the left-hand sides of Eqs. (1.9) 

are taken as S i. When the conditions of Lemma (2.2) are satisfied the equality S i = 0 follows from (2.10), which proves that 

systems (1.9) and (2.10) are equivalent. The necessity of the second condition (2.9) in the class of functions which satisfy the 

condition X + # 0, follows from the principle of the argument [4] of thetheory of analytic functions. 

Note 2.1. The conditions for the functions u and H to be continuous can be made less strict, in which case the assertion 

proved remains true. The conclusion of Theorem 2.1 holds if u and ,,, are differentiable functions u x and o~ x satisfy the H61der 

condition with respect to the variable ),. 

The hyperbolicity of the system of equations on the initial data u(x, 0, X), H(x, 0, ~) is necessary for the Cauchy 

problem to be locally well-posed. For Eqs. (1.9), linearized on the stationary solution u = u~ H = H~ one can construct 

an example of the ill-posed nature of the formulation of the Cauchy problem if, for the u ~ and H ~ considered, Eq. (2.7) has 

complex roots. This solution describes the shear flow of a layer of depth h o, in which case u = u~ v = 0, p = 

f'(h o - y), y = ),ho, H00,) = f'(ho(1 - ~,))h o. The system for perturbations 
l 

u + .% + o~ f H d v  = O, 
o ( 2 . 1 3 )  

+ u ~  + n~ = 0 

has a solution in the form of an exponential function, increasing with time 

V = (u, H) r = e-t(T:0. ), ~o2()t))rexp(il(x - kt)) (2.14) 

(l is an arbitrary real number and k is a complex root (Ira k > 0) of Eq. (2.7) with u = u ~ H = H~ As l --- o0 U(x, 0, ),) 

---> 0, but U(x, t, ),) does not approach zero, which indicates that the Cauchy problem is ill-posed when conditions (2.9) break 

down. 

Note that in the hyperbolic case Eqs. (2.13) can be reduced to characteristic form, similar to (2.10), which enables 

the linearized system to be integrated in explicit form. 

3. Analysis of the  C o n d i t i o n s  f o r  Hyperbolici ty.  As shown above, the analysis of the hyperbolicity of  the equations 

of long waves has a direct relationship to the investigation of the stability of steady flows with a velocity profile "frozen" with 

respect to x and t (the velocity profile of steady flow is identical with the velocity profile of unsteady flow for chosen fixed 

values of x and t). For a number of well-known criteria of stability of the stationary shear flows of an incompressible fluid in 

a layer with a specified upper boundary, we obtain the corresponding analogs from (2.9) (in this case the liquid, in general, 

is compressible and the upper boundary is free). 

Taking into account the equalities 

= - A a r g x  ( X )  = 2Aarg co ( d u /  dp) ,  �9 - -1 Z+ 

conditions (2.9) can be represented in the form 

Z f f i A +  / B ~  0, g =  Aarg(A + /.B) = 0, 

A = m (1 - a ( du / - I  (u~ - u) -~ 
~ dP) l 

d d .  l d U  

(Uo - u)-, + o y ; u), 
+ IdP)o .o 
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- I  

B = m o n l - ~ u  , m = (u  1 - u ) (u  - %) (3.1) 

(the differentiation and integration are carried out for fixed x and t). The contour P, described by the point Z when u varies 

from u 0 to u 1, begins and ends on the real semiaxis (when u x > 0 Z(Ul) > 0, Z(u 0) > 0, and when u x < 0 Z(u 1) < 0, Z(u0) 

< 0). 
The increment of the argument is determined by the number of rotations of the point Z around zero, multiplied by 2~r, 

for the motion of Z along r .  If  d2u/dp 2 ~ 0, then r lies entirely in the upper or lower half-plane and Z undergoes no rotations 

around zero. Then x = 0 and the hyperbolicity conditions are satisfied (the analog of the classical criterion of  Rayleigh 

stability). If du/dp < 0, and d2u/dp 2 vanishes at the unique point u = u.  E (u o, Ul), the condition x = 0 is satisfied if A(u.) 

> 0 (the analog of  the Rozenbluth and Simon criterion [5]). When this condition is satisfied the zero does not fall in the 

interior of r .  Note that if the sign of d2u/dp 2 changes from negative to positive at the point u,, the inequality A(u.) > 0 is 

automatically satisfied. In fact, the first terms in (3.1) for A are positive while the integral term can be represented in the form 

of two positive terms: 

u. -3 d2 u dU du d2u dU 

u 0 

(the integrals converge since d2u/dp 2 = 0 when u = u,). The condition A ~ 0 also ensures that (1.9) is hyperbolic. 

We will give an example of a one-parameter family of steady solutions in which a change in the type of system of 

equations (1.9) occurs when the parameter changes. 

Suppose the equation of  state of a barotropic medium has the form p = p(p) = bp 1/2 (b = const), flow occurs in a 

layer of depth h = 9(2b)-Ip02/3, and the pressure p in the layer and the horizontal velocity are defined by the formulas 

p = (4p0 ~ - 2 �9 3 - t b y )  ~ ,  u = 4po lar (y )  (a  > 0) ,  

where the function v(y) is the root of the equation 

y -- 6b-Xpo~(1 - (1 - 2(6-x(2v - I) 3 + 6 -~ + S(48)-tu))2/3), 

which vanishes when y = 0. The following equation is satisfied for this solution: 

d p / d v  = - 16p0((2u-  1) 2 - 5(48) -~) (3.2) 

(d2p/dv 2 = 0 when v = 2-1) .  The integral in (3.1) can be evaluated in the form 

A = 16p~3a2(1 - v)v[1 + (32a2b)-l(53(3(1 - v)) -1 + 53(3v) -1 

- 128 - 6 4 ( 2 u -  1)ln(v -1 - 1))]. 

When v = 2 -1,  A > 0 when a > a k and A < 0 when a < a k, where the critical value a k = (331/96)1/2-b -1.  Hence, when 

a < a k Eq. (2.7) has complex roots. This example shows that instability of the steady flow is possible for flow velocities as 

low as desired. (The criterion of  stability is formulated in terms of the function dp/du, and it approaches infinity as a --> 0.) 

If we assume that a is a function of  x in the formulas derived above, we have an example of  initial data for the system of 

equations (1.9) belonging to the region of hyperbolicity when a(x) < a k, or an example of an ill-posed formulation of the 

Cauchy problem if the inequality a(x) < a k breaks down for certain x. 

Note that when O(P) = const the above analysis gives the conditions for the system of equations of  long waves in an 

incompressible fluid to be hyperbolic. In the region of hyperbolicity the long-wave processes are characterized by a finite 

velocity of  propagation of  perturbations, where the velocity of  propagation of the perturbation, by (2.7), depends nonlocally 

on the flow parameters, and is determined by the integrals of  the flow parameters over the depth. Conditions (2.9) describe 

a region in which the long-wave model is applicable in the case of  a monotonic velocity profile, and outside this region it is 
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necessary to employ more complete models. On the basis of the above analysis it is natural to introduce the ideas of 

supercritical and subcritical steady flows. In supercritical flow, by (2.7) 

P 

1 - g f d ;  - -5->0 ,  
U 

PO 

while in subcritical flow the inverse inequality is satisfied. The behavior of the characteristics on the boundary affect the 

formulation of the boundary conditions, as in the case of the differential equations. In particular, on the boundary of the inflow 

of liquid one must formulate a different number of boundary conditions for subcritical and supercritical flows. It is also 

important to monitor that the conditions of hyperbolicity are satisfied in a numerical calculation of the flows. If the conditions 

of hyperbolicity are satisfied for t = 0 while the continuous solution of system (1.9) satisfies the condition Z ~ 0 in the range 
0 _< t < t o, the data for t = t o will also correspond to a region of hyperbolicity of Eqs. (1.9) (homotopic vector fields have 

the same rotation [6]). 
This research was carried out with fmancial support from the Russian Fund for Fundamental Research (Project 93-013- 

17621). 
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